《数一数》的优秀教案设计

发布时间: 2025-07-14 10:31:13

《数一数》的优秀教案设计

教学目标:

1、通过数数活动,初步了解学生的数数情况,使学生初步学会数学的方法。

2、帮助学生了解学校,激发学生学习数学的兴趣,滲透思想品德教育。

教具、学具准备:挂图

教学重难点 :

能正确数出生活中的事物的数量。

教学过程:

一、 导入:

小朋友们,你们已经是小学生了。从今天开始,我们要在学校里学习很多有用的知识。这节课是数学课,我们要学习数学知识。

今天我们就来学习第一课:数一数(板书课题)

二、 新课

1、出示彩色挂图,教学数数。

( 1 )质疑:教师:“这幅图画画的是什么地方?学校开学的第一天,小朋友们高高兴兴地来到学校。大家一起来看这幅图里都画了些什么?”(借助“美丽的校园”情境图,帮助学生了解学校生活,初步懂得小学生的行为规范——遵守纪律、按时到校、尊敬老师、关爱同学、好好学习、锻炼身体。)

( 2 )小组学习:先让学生观察,在小组内和小朋友们说一说。

( 3 )汇报学习情况:指名让学生说一说。教师在学生随意说的基础上,引导学生按数目从小到大的顺序数出图中的人或事物的个数。(通过学生计数图中人和物的数量,全面了解学生数数的情况、观察事物的方法、语言表达的能力,为教师有效把握教学起点奠定基础。)(如果是在书上数,教师可以引导学生用笔点着数,或用笔做记号以保证不重不漏。)

(如:能用“ 1 ”表示的有:一面国旗、一位教师;能用“ 2 ”表示的有:两个同学向教师敬礼、两个同学浇花; 3 个同学在踢球;有 4 朵葵花;宣传栏上有 5 个大字;花坛里有 6 朵花;天空有 7 只鸟;楼边有 8 棵树;校园里有 9 个学生; 10 个人等)。然后让同桌再互相说。

2、 找一找,数一数:我们也有一个美丽的校园,我们也可以数数在我们校园里、教室里看到的东西。(比如教室里有多少张桌子,有多少把椅子,有几扇窗子,有几盏灯,有多少个同学,其中多少男生,多少女生,这些问题都可以成为孩子观察的内容。)

师 : 谁能把你自己观察到的告诉大家?(指名回答)

3、扩展训练:

(1) 关于方位的认识:

提问学生,某某前边一列有几个同学?后边一列有几个同学?左边一行有几位同学?右边一行有几位同学?

告诉你的同桌,你的左边一行有几个同学?右边一行有几个同学?前面一列有多少的同学?后面一列有多少个同学?

(2) 动脑动手:

1. 你喜欢画什么,就在右面的空格里画什么,要画得和左边同样多 .

2、练习 2 第一、二题

三、 小结:

数学课有趣吗?你们喜欢上数学课吗?今天的数学课,同学们表现得很踊跃、很认真。希望同学们以后也能像今天这样认真的学习数学知识。

四、课外观察作业

1、数一数在家里或在其他地方看到的东西,并记录下来,和同学们交流。

2、准备 5 个圆形、 5 个三角形、 5 个正方形。

拓展阅读

1、人版高

1、材(学内容)

本课时主要研究任意角三角函的定义。三角函类重要的基本初等函,是描述周期性现象的重要学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函的定义来抽象和规范三角函的定义,同时也可以类比研究函的模式和方法来研究三角函;启后是指定义了三角函之后,就可以进步研究三角函的性质及图象特征,并体会三角函在解决具有周期性变化规律问题中的作用,从而更深入地领会学在其它领域中的重要应用、

2、理念

本堂课采用“问题解决”学模式,在课堂上既充分发挥学生的主体作用,又体现了师的引导作用。整堂课先通过问题引导学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函模型来刻画吗?从而引导学生带着问题阅读和钻研材,引发认知冲突,再通过问题引导学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函的定义”这新的概念,最后通过例题与练习,将任意角三角函的定义,内化为学生新的认识结构,从而达成学目标、

知识与技能目标:形成并掌握任意角三角函的定义,并学会运用这定义,解决相关问题、

过程与方法目标:体会学建模思想、类比思想和化归思想在学新概念形成中的重要作用、

情感态度与价值观目标:引导学生学会阅读材,学会发现和欣赏学的理性之美、

4、重点难点

重点:任意角三角函的定义、

难点:任意角三角函概念的理解(函模型的建立)、类比与化归思想的渗透、

5、学情分析

学生已有的认知结构:函的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函的概念、在学过程中,需要先将学生的以直角三角形为载体的锐角三角函的概念改造为以象限角为载体的锐角三角函,并形成以角的终边与单位园的交点的坐标来表示的锐角三角函的概念,再拓展到任意角的三角函的定义,从而使学生形成新的认知结构、

6、法分析

“问题解决”学法,是以问题为主线,引导和驱动学生的思维和学习活动,并通过问题,引导学生的质疑和讨论,充分展示学生的思维过程,最后在解决问题的过程中形成新的认知结构、这种学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

7、学法分析

本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函的定义”,最后引导学生运用类比学习法,来研究三角函些基本性质和符号问题,从而使学生形成新的认识结构,达成学目标、

8、(过程)

、引入

问题1:我们已经学过了任意角和弧度制,你对“角”这概念印象最深的是什么?

问题2:研究“任意角”这概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象最深刻的是什么?

问题3:当角clipXimage002的终边在绕顶点O转动时,终边上的个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些量?圆周运动的这些量之间的关系能用个函模型来刻画吗?

二、原有认知结构的改造和重构

问题4:当角clipXimage002[1]是锐角时,clipXimage004,线段OP的长度clipXimage006这几个量之间有何关系?

学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函

学生阅读材,并思考:

问题5:锐角三角函是我们高中意义上的函吗?如何利用函的定义来理解它?

学生讨论并回答

三、新概念的形成

问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函的定义吗?

学生回答,并阅读材,得到任意角三角函的`定义、并思考:

问题7:任意角三角函的定义符合我们高中所学的函定义吗?

展示任意角三角函的定义,并指出它是如何刻划圆周运动的

并类比函的研究方法,得出任意角三角函的定义域和值域。

四、概念的运用

1、基础练习

①口算clipXimage008的值、

②分别求clipXimage010的值

小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值

ⅱ)诱导公式()

③若clipXimage012,试写出角clipXimage002[2]的值。

④若clipXimage015,不求值,试判断clipXimage017的符号

⑤若clipXimage019,则clipXimage021为第象限的角、

例1、已知角clipXimage002[3]的终边过点clipXimage024,求clipXimage026之值

若P点的坐标变为clipXimage028,求clipXimage030的值

小结:任意角三角函的等价定义(终边定义法)

例2、物体A从点clipXimage032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clipXimage034,试用clipXimage034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clipXimage006[1],如何用clipXimage034[2]来表示物体A所在位置的坐标?

小结:可以采用三角函模型来刻画圆周运动

五、拓展探究

问题8:当角clipXimage002[4]的终边绕顶点O作圆周运动时,角clipXimage002[5]的终边与单位圆的交点clipXimage039的坐标clipXimage041clipXimage043与角clipXimage002[6]之间还可以建立其它函模型吗?

思考:引入平面直角坐标系后,我们可以把圆周运动用来刻画,这是将“形”转化成为“”;角clipXimage002[7]正弦值是,你能借助平面直角坐标系和单位圆,用“形”来表示这个“”吗?角clipXimage002[8]余弦值、正切值呢?

六、课堂小结

问题9:请你谈谈本节课的收获有哪些?

七、课后作业

材P21第6、7、8题

2、人版高

经典例题

已知关于 的方程 的实解在区间 ,求 的取值范围。

反思提炼:1.常见的四种指方程的般解法

(1)方程 的解法:

(2)方程 的解法:

(3)方程 的解法:

(4)方程 的解法:

2、常见的三种对方程的般解法

(1)方程 的解法:

(2)方程 的解法:

(3)方程 的解法:

3、方程与函之间的转化。

4、通过形结合解决方程有无根的问题。

课后作业:

1、对正整n,曲线 在x=2处的切线与轴交点的纵坐标为 ,则列 的前n项和的公式是

[解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.

f ′(2)=-n2n-1-2n=(-n-2)2n-1.

在点x=2处点的纵坐标为=-2n.

∴切线方程为+2n=(-n-2)2n-1(x-2)。

令x=0得,=(n+1)2n,

∴an=(n+1)2n,

列ann+1的前n项和为2(2n-1)2-1=2n+1-2.

2、在平面直角坐标系 中,已知点P是函 的图象上的动点,该图象在P处的切线 交轴于点M,过点P作 的垂线交轴于点N,线段MN的中点的纵坐标为t,则t的最大值是_____________

解析: 则 ,过[**]点P作 的垂线

,所以,t在 上单调增,在 单调减, 。

3、人版高

(1)了解集合的表示方法;

(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

学重点:掌握集合的表示方法;

学难点:选择恰当的表示方法;

、复习回顾:

1、集合和元素的定义;元素的三个特性;元素与集合的关系;常用的集及表示。

2、集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系

二、新课

)。集合的表示方法

我们可以用自然语言和图形语言来描述个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1) 列举法:把集合中的元素列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考

虑元素的顺序。

2、各个元素之间要用逗号隔开;

3、元素不能重复;

4、集合中的元素可以,点,代式等;

5、对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然集N用列举法表示为

例1.(课本例1)用列举法表示下列集合:

(1)小于10的所有自然组成的集合;

(2)方程x2=x的所有实根组成的集合;

(3)由1到20以内的所有质组成的集合;

(4)方程组 的解组成的集合。

思考2:(课本P4的思考题)得出描述法的定义:

(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。

具体方法:在花括号内先写上表示这个集合元素的般符号及取值(或变化)范围,再画条竖线,在竖线后写出这个集合中元素所具有的共同特征。

般格式:

如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

说明:

1、课本P5最后段话;

2、描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整},即代表整集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整}。下列写法{实集},{R}也是错误的。

例2.(课本例2)试分别用列举法和描述法表示下列集合:

(1)方程x2—2=0的所有实根组成的集合;

(2)由大于10小于20的所有整组成的集合;

(3)方程组 的解。

思考3:(课本P6思考)

说明:列举法与描述法各有点,应该根据具体问题确定采用哪种表示法,要注意,般集合中元素较多或有无限个元素时,不宜采用列举法。

(二)。课堂练习:

1、课本P6练习2;

2、用适当的方法表示集合:大于0的所有奇

3、集合A={x| ∈Z,x∈N},则它的元素是 。

4、已知集合A={x|-3

归纳小结:

本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。

作业布置:

1、 习题1.1,第3.4题;

2、 课后预习集合间的基本关系。

点击查看更多《数一数》的优秀教案设计相关内容»

转载请注明出处:https://www.288h.cn/articles/14082.html

热门阅读

  1. 《江南春》《春日偶成》教案
  2. 标准的购房定金合同
  3. 周末客户祝福语
  4. 关于励志的5首打油诗
  5. 庆祝中秋佳节的发言稿
  6. 合法的员工入股协议书
  7. 关于离婚协议书的样本
  8. 袁姗姗名言28条
  9. 传播学专业自荐书模板范文
  10. 春节归家的句子
  11. 变美文摘抄
  12. 201年元宵节简短祝福语短信
  13. 安全的名言黑板报资料整理
  14. 信息技术与数学教学整合的实践探究论文
  15. 201鸡年辞旧迎新祝福语大全
← 返回首页